Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual.

نویسندگان

  • Karen Alim
  • Gabriel Amselem
  • François Peaudecerf
  • Michael P Brenner
  • Anne Pringle
چکیده

Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pruning to Increase Taylor Dispersion in Physarum polycephalum Networks.

How do the topology and geometry of a tubular network affect the spread of particles within fluid flows? We investigate patterns of effective dispersion in the hierarchical, biological transport network formed by Physarum polycephalum. We demonstrate that a change in topology-pruning in the foraging state-causes a large increase in effective dispersion throughout the network. By comparison, cha...

متن کامل

Spatial mapping reveals multi-step pattern of wound healing in Physarum polycephalum

Wounding is a severe impairment of function, especially for an exposed organism like the network-forming true slime mould Physarum polycephalum. The tubular network making up the organism’s body plan is entirely interconnected and shares a common cytoplasm. Oscillatory contractions of the enclosing tube walls drive the shuttle streaming of the cytoplasm. Cytoplasmic flows underlie the reorganiz...

متن کامل

Control of chemotaxis in Physarum polycephalum

Plasmodia migrate towards those situations which increase the frequency of their alternations in streaming, and away from those which decrease the frequency. Therefore peristalsis-like waves in Physarum move in the direction opposite from the net movement of the organism. The mechanism is fundamentally related to other known types of chemotaxis.

متن کامل

A revised model of fluid transport optimization in Physarum polycephalum

Optimization of fluid transport in the slime mold Physarum polycephalum has been the subject of several modeling efforts in recent literature. Existing models assume that the tube adaptation mechanism in P. polycephalum's tubular network is controlled by the sheer amount of fluid flow through the tubes. We put forward the hypothesis that the controlling variable may instead be the flow's pressu...

متن کامل

An Active Poroelastic Model for Mechanochemical Patterns in Protoplasmic Droplets of Physarum polycephalum

Motivated by recent experimental studies, we derive and analyze a two-dimensional model for the contraction patterns observed in protoplasmic droplets of Physarum polycephalum. The model couples a description of an active poroelastic two-phase medium with equations describing the spatiotemporal dynamics of the intracellular free calcium concentration. The poroelastic medium is assumed to consis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 33  شماره 

صفحات  -

تاریخ انتشار 2013